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Modeling translocation of particles on one-dimensional polymer lattices
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Department of Physics, ZhongShan University, GuangZhou, People’s Republic of China

~Received 30 October 2000; revised manuscript received 9 January 2001; published 18 June 2001!

We introduce a general random walk model that is an extension of the random walk model proposed by
Berg. The model can be used to describe a particle’s translocation along a polymeric lattice with a nonuniform
distribution of obstacles. These obstacles are representative of DNA-bound proteins, of drugs, and of a DNA
packing environment. Using this model in the bacteriophage replication process, we show the effects of
random obstacles on an ATP-driven particle’s translocation along single-stranded DNA. The principal finding
is that the average statistical time of the translocation process decreases with the increase of an obstacle’s
strength. We also find an interesting relation between the average statistical time and the DNA chain length.
Our results can be used to explain some physiological phenomena. They show the usefulness of our model in
an analysis of the effect of random obstacles on particles’ translocation along one-dimensional polymer lat-
tices.
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I. INTRODUCTION

Many physiological processes require the transport
macromolecules or macromolecular complexes from one
sition to another within cells. If these movements are dir
tional or vectorial in nature they are also called translocati
and they must~1! involve movement along a polymer, fila
ment, or surface to permit the maintenance of directional
and ~2! be coupled to a source of free energy, which gen
ally involves a chemical energy to mechanical energy tr
sition by the enzymatic hydrolysis of ATP. Examples of su
directional ATPase-driven translocation in living systems
clude the movement of organelles along microtubules@1#,
the movement of myosin along fibrous actin@2,3#, and the
unwinding of double-stranded DNA by helicase@4,5#. The
translocation of ATPase-bearing molecular motors is cha
terized by four central features@6#: the characteristic proces
sivity, the directional~vectorial! movement, the role of ATP
hydrolysis in producing directional movement, and the ch
acteristic thermodynamic efficiency. Although the process
ity and directionality of such translocation processes can
measured in certain systems@7–9#, the translocation proces
itself cannot generally be monitored by chemical means
there is no definite product associated with translocat
Therefore, theoretical models need to be developed so
the translocation process can be described, and so tha
observed ATP consumption rates can be interpreted. Po
et al. @10# proposed a microtubule model for explaining t
movement of organelles in cells. In an attempt to drive
rate constant of ATP-driven translocation process alon
DNA chain, a biased random walk model was developed
Ref. @6#. This model was based on Berg’s random walk
the diffusion process of a repressor along a strand of D
chain @11#. A bias is introduced to statistically describe th
translocation along a chain with uniformly distributed o
stacles. However, in most situations the distribution of o
stacles along a DNA chain is nonuniform. For example,
stone protein complexes, drugs, and metabolites can al
as obstacles distributed on the DNA chain. These obsta
affect translocation in a nonuniform manner. In order to ta
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these nonuniform obstacles into consideration, it is neces
to develop a generalized model with a nonuniform bias
walk. In this paper we present a model, and apply it to
system that mimics the DNA of bacteriophge. We will ca
culate different average statistical times in different biolo
cal environments, and analyze the effects of random
stacles on the ATP-driven helicase translocation alo
single-stranded DNA. The behavior of translocation und
different obstacle strengthes and along different stra
lengths is discussed.

II. MODEL

Let us consider a particle translocating along a o
dimensional polymer lattice with lengthL. We begin by pre-
senting the random walk model proposed by Berg@11#.
When a particle is released at positionx5a, as indicated in
Fig. 1~a!, how long does it take to blunder into an absorber

FIG. 1. Models for the translocation of a particle on a on
dimensional polymer lattice.~a! A particle can move to either side
along a one-dimensional polymer lattice, and the probabilities
motion to the right or left were both equal to12 . ~b! A particle can
move to either side along a one-dimensional polymer lattice. T
probabilities of translocation in both directions along the on
dimensional polymer lattice are not equal to1

2 . The particle walk to
the right has a probabilityP(x), and that to the left 12P(x), where
P(x) is position dependent.
©2001 The American Physical Society06-1
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x50 or x5L? If this experiment is repeated many time
what is the mean time to captureT(a)? To find the answer
Berg returned to the formalism of a random walk. He co
sidered that particles could move to either side along a o
dimensional polymer lattice, and that the probabilities to
right and to the left were both equal to12 . Release a particle
at positionx at time t50, and allow it to step to the right o
to left a distanced every t seconds. At a timet, the particle
will be at a positionx1d with a probability of 1

2 or at posi-
tion x2d with a probability of 1

2 ; the mean times to captur
from the positions areT(x1d) and T(x2d), respectively.
Thus, the expectation value ofT(x) is

T~x!5t1 1
2 @T~x1d!1T~x2d!#. ~1!

By adding and subtractingT(x)/2, and multiplying through
by 2/d, one can obtain

1

2
@T~x1d!2T~x!#2

1

2
@T~x!2T~x2d!#1

2t

d
50. ~2!

Whend is very small, by the definition of a derivative, Eq
~2! can become

dT

dxU
x

2
dT

dxU
x2d

1
2t

d
50. ~3!

Dividing once more byd, again appealing to the definition o
a derivative, and noting that 2t/d251/D, Eq. ~3! becomes
the following differential equation:

d2T

dx2 1
1

D
50. ~4!

Given suitable boundary conditions, this differential equ
tion can be solved forT. At an absorbing boundary, the mea
time to capture is 0, soT50. At a reflecting boundary the
mean time to capture does not vary withx, so dT/dx50.
Equation~4! describes a random walk such that there are
obstacles on the polymer lattice. In many real transloca
processes, particles are involved in unidirectional AT
driven translocation with bidirectional ‘‘slipage’’@6#. Next
we introduce our general random walk. It describes bia
random walks in translocation processes.

We treat a particle’s translocation as a biased rand
walk on a one-dimensional polymer lattice with lengthL.
Following Berg@11# and Ref.@6#, we believe that particles
can move to both sides along a one-dimensional poly
lattice, but we maintain that right ad left translocation pro
abilities are not equal to12 because of nonuniform obstacle
on the lattice. We define a one-dimensional coordinate s
tem along the lattice with its origin at the left end; if a pa
ticle is released from positionx at t50, as indicated in Fig.
1~b!, we assume that it walks to the right with a probabil
of P(x), and to the left with a probability of 12P(x). P(x)
is position dependent because of the nonuniform distribu
of obstacles along the lattice. Given thatDt andDx are the
time and distance of each step, we assume them to be
tion independent. If the translocation is further assumed to
01190
,

-
e-
e

-

o
n
-

d

m

er
-

s-

n

si-
e

biased toward the right of the chain@and therefore 1
2

,P(x),1#, then the mean timesT(x), T(x1Dx), and
T(x2Dx) for the particle to walk from positionx, x1Dx,
andx2Dx to L satisfy the following equation:

T~x!5Dt1P~x!T~x1Dx!1@12P~x!#T~x2Dx!. ~5!

The above equation can be rewritten as follows:

P~x!@T~x1Dx!2T~x!#1@12P~x!#@T~x2Dx!2T~x!#

1Dt50. ~6!

By adding and subtracting@12P(x)#@T(x1Dx)2T(x)#,
and multiplying through by 1/(Dx)2, we obtain

@12P~x!#
T~x1Dx!22T~x!1T~x2Dx!]

~Dx!2

1
@2P~x!21#

Dx

T~x1Dx!2T~x!

Dx
1

Dt

~Dx!2 50. ~7!

For one-dimensional polymer lattices the stepDx is very
small, and no less than the distance between neighbo
base pairs~3.4 Å!, so we may think thatDx→0. Appealing
to the definition of a derivative, we substituted2T(x)/dx2

and dT(x)/dx for @T(x1Dx)22T(x)1T(x2Dx)#/(Dx)2

and @T(x1Dx)2T(x)#/Dx, respectively; therefore, Eq.~7!
becomes the following differential equation:

@12P~x!#
d2T~x!

dx2 1
@2P~x!21#

Dx

dT~x!

dx
1

1

D
50. ~8!

Here 1/D5Dt/(Dx)2.
This differential equation is our general random wa

model equation, and it can be solved given a specific se
boundary conditions. Different physiological processes h
different boundary conditions. If there are two absorbi
points at both boundaries, the corresponding boundary c
ditions areT(0)5T(L)50. If there is a reflecting boundar
at x50, the mean time to capture a particle does not v
with x @11#, so the boundary condition isdT(0)/dx50; on
the other boundary atx5L, there exists an absorbing poin
andT(L) is 0. In this work, we chose the latter set of boun
ary conditions, since they correspond with the real phy
ological environment.

Given the solution of Eq.~7! or ~8!. One can determine
the average statistical timeT̄ and the rate constantkt of a
particle along a polymer lattice of lengthL by the following
formulas:

T̄5
1

L E
0

L

T~x!dx, ~9!

kt5
1

T̄
5

L

*0
LT~x!dx

. ~10!

If several special constants are chosen forP(x), Eq. ~8!
has analytical solutions. For instance, whenP(x)51, and a
particle moves unidirectionally, Eq.~8! becomes.
6-2
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dT~x!

dx
1

Dt

Dx
50, ~11!

which has the solution

T~x!5
Dt

Dx
~L2x!. ~12!

The average statistical timeT̄ and the rate constantkt of a
particle translocation along a chain of lengthL can be shown
to be

T̄5
LDt

2Dx
, ~13!

kt5
2Dx

LDt
. ~14!

Both are dependent on the chain length. In this case
model can be used to describe the unidirectional movem
of myosin along fibrous actin, and of some organelles alo
microtubules.

If P(x)5 1
2, the particle walk to both sides is equally pro

able. Equation~8! then become

d2T

dx2 1
2

D
50. ~15!

This is the equation derived by Berg@11#. Under our bound-
ary conditions, it has the following solution:

T~x!5
1

D
~L22x2!. ~16!

From this, one can derive the average statistical transloca
time T̄ and rate constantkt :

T̄5
D

L
ln 2, ~17!

kt5
L ln 2

D
. ~18!

Both are dependent on the lattice length. In this case,
model can be used to describe the translocation of parti
along a polymer lattice with free obstacles.

In another case, in whichP(x)5const and yetP(x)Þ 1
2

andP(x)Þ1, Eq. ~8! was expressed in Ref.@6# as

d2T~x!

dx2 24b
dT~x!

dx
1

2

kr1kf
50, ~19!

where

b5
kr2kf

2~kr1kf !
5

2P21

~12P!Dx
, ~20!

kr1kf5D~12P!. ~21!
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The constantb defines the degree of bias of the walk.kf and
kr represent the rate constants for movement in the forw
step and reverse direction, respectively. In this caseb, kf ,
andkr can be determined by the constantP, and our model
can be used to describe the translocation of particles a
uniformly distributed obstacle lattices.

If P(x) is a complicated function ofx, it is difficult to find
analytical solution for Eq.~8!. The mean timeT(x) of a
particle’s movement fromx to L can be derived by solving
Eq. ~7! or ~8! numerically.

To study the effects of obstacles on particles’ translo
tion, we apply our general random walk model to the bac
riophage T4 DNA replication process, and carry out a cal
lation to determine the average statistical timeT̄ using a
distribution of obstacles that mimics a single-standard DN
of bacteriophge. For purposes of comparison, a calcula
on an obstacle free DNA chain is also carried out.

In real instances of the bacteriophage T4 DNA replicat
process, a DNA polymerase complex translocates,
pushes the replication fork along a double DNA chain@12#.
A class of DNA unwinding enzymes, DNA helicases, is i
volved in base pair separation at the fork@13#. This unwind-
ing process is driven by the hydrolysis of ATP@14#. Accord-
ing to this physiological process we regard the replicat
complex@15# as a particle biased toward the replication fo
along the single-stranded DNA on the lagging@15# strand.
The parameters for our model are chosen as follows: a O
zaki @12# fragment consists of several hundred base pairs
in this work we first choose 500 base pairs, which typica
describe the replication of the lagging@15#. Such a single-
stranded DNA has a lengthL of 1700 Å. The step of walk
Dx is the distance between neighboring DNA base pa
Dx53.4 Å. The observed replication rate for bacteria is us
to determineDt tentatively. In real bacteria replication pro
cesses, the observed speed of the replication fork is 50
base pairs per minute. This gives aDt of 1.231023 s, so
1/D5Dt/(Dx)2 is 1.031016s/m2. We can solve Eq.~8! with
the above parameters.

If a particle moves uinidirectionaly along an obstacle fr
DNA chain, the probabilityP is 1, and the calculated averag
statistical timeT̄ and rate constantkt of finishing the trans-
locating process are 30 s and 0.033, respectively. If a par
moves on an obstacle free DNA chain, such movement
be considered as a completely random walk, and the p
ability that P is 1

2 . The calculated result is shown in Fig. 2
We can see that the particle being set free at the left end
need the longest time to move to the absorber—the right
of the DNA strand. The average statistical timeT̄ of the
particle’s translocation is 3350 s, the rate constantkt is
0.0003 s21. In another case there are many obstacles o
single-stranded DNA, we chose to follow Chenet al. @16#,
and maintain that a sine periodic functions describe the
fects of obstacles on the translocation process. The distr
tion probability of a particle’s movement can be shown a

P~x!5 1
2 1 1

2 « sin2 ax, ~22!

wherea53.831023 Å 21, and« describes the level of ob
stacle resistance and must be 0,«,1. For different values
6-3
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of «, the calculated mean timesT(x) for a particle to travel
from positionx to positionL are shown in Fig. 3. All of the
T(x) are found to follow an approximately linear relatio
ship withL2x. We can also see that, for a given«, the mean
time T(x) to travel fromx to L is very small whenx is near
L, and increases asx approaches 0, the increase is more ra
than in the case ofP5 1

2. The particle being set free at the le
end will also need the longest time to move to the absorbe
the right end of the DNA strand. That is to say, a particle t
is set free closer to the left end will require a longer tra
time. We concentrate on the relation between the aver
statistical timeT̄ and the obstacle’s strength«. Our findings
are shown in Fig. 4. We observe that the average statis
time T̄ decreases with an increase of«, that this decrease
becomes more rapid at smaller values of«, and that it is most

FIG. 2. The calculated mean timeT(x) of a particle translocat-
ing from positionx to positionL on a single-stranded DNA with a
free obstacleP5

1
2. The length of the single-stranded DNA isL

51700 Å.

FIG. 3. The calculated mean timeT(x) of a particle translocat-
ing from positionx to positionL on a single-stranded DNA with an
obstacle distributionP(x)5

1
2 1

1
2 « sin2(ax). The length of the

single-stranded DNA isL51700 Å. The lines from the bottom to
the top correspond to«51, 0.8, 0.6, 0.4, and 0.2, respectively.
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prominent in the region 0,«,0.2. On the other hand, a
«.0.2, the decrease is relatively insensitive to«. The rela-
tion between the rate constantkt and obstacle’s strength« is
shown in Fig. 5. From this, we can see that the rate cons
kt maintains an approximately linear relationship with«, and
that the statistical value is about 1022 s21 which is consistent
with existing experiments and relevant theoretical consid
ations@15#.

We have also examined the effects of the DNA cha
length on average statistical timeT̄. Figure 6 gives the aver
age statistical timeT̄ as a function of the chain length. W
can see that for a given« the average statistical timeT̄ forms
stairs as a function ofL. That is to say, for some length
the average statistical time is very sensitive toL, but
for other lengths it becomes insensitive toL. We find that
the behavior is due to such periodic distribution of obstac
on DNA chains.

FIG. 4. The calculated average statistical timeT̄ of a particle
translocating on a single-stranded DNA as a function of the obst
strength«. The obstacle distribution and chain length are the sa
as in Fig. 3.

FIG. 5. The calculated translocation rate constantkt as a func-
tion of the obstacle strength«. The obstacle distribution and chai
length are the same as in Fig. 3.
6-4
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III. CONCLUSION

In summary, a general random walk model has been
sented. It can be used to study the effects of random
stacles on a particle’s translocation along one-dimensio
polymer lattices. Our results can provide a way to underst
the relationship between the physical nature of o
dimensional translocation on a single-stranded DNA and
physiology of obstacles in such environments. Compar
the general random walks of particles along one-dimensio
DNA strands with distributed obstacles and those that
obstacle free, we find that the average statistical time
translocation is much shorter in an obstacle-laden biolog

FIG. 6. The calculated average statistical timeT̄ of a particle
translocating on a single-stranded DNA as a function of the num
of base pairsN in the DNA chain.N is in units of base pairs~b!.
The obstacle distribution isP(x)5

1
2 1

1
2 « sin2(ax), where the« is 1.
o-

l.

S
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environment than in an obstacle-free biological environme
On the other hand, when comparing general random wa
with unidirectional movement, we found the average sta
tical time of the translocation to be longer in obstacle-lad
biological environments than in those that are obstacle f
That is to say, in real instances of lagging strand replicat
processes the obstacles’ biological environments are ne
sary; therefore, there are some kinds of proteins bound
DNA strands such asgp32. These bound proteins can act
obstacles to increase the bidirectional efficient and to red
the unidirectional efficient. From the relation between t
rate constant of a particle’s translocation and the obsta
strength, and from the relation between average statis
times and the length of a DNA chain, we can see differ
obstacle strengths corresponding to different transloca
rate constants. The rate constant governs a particle~ATPase!
active lattice-bound state. In real physiological processes
lattice-bound state determines the lifetime of transloca
@6#. Thus our results can be used to explain some physiol
cal phenomena: for example, the ways in which differe
enzymes have different lifetimes. This example illustra
that show our model has potential application to all trans
cation processes, including the movement of RNA po
merase along DNA in transcription, and the diffusion proce
of protein and drugs along DNA. Our model can also be u
to predict the rate of ATP hydrolysis. Corresponding work
this area is currently underway.
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